

Factoring out an absolute value

Consider $x^{b/a}$, that is, $\sqrt[a]{x^b}$

Applying absolute value

When you factor *x* out of a radical:

• If α is even, then x must be expressed as the absolute value: |x|.

$$\sqrt[4]{x^6} = |x| \cdot \sqrt[4]{x^2}$$
$$\sqrt{x^3} = |x| \cdot \sqrt{x}$$

 \triangleright However, if the resulting |x| is raised to an even power, then you can drop the absolute value.

$${}^{4}\sqrt{x^{10}} = |x|^{2} \cdot {}^{4}\sqrt{x^{2}}$$
$$= x^{2} \cdot {}^{4}\sqrt{x^{2}}$$

▷ All that said, if the exponent of x is odd, then x is restricted to values greater than or equal to zero, so the absolute value becomes unnecessary.

The Upshot

> You need the absolute value **only when** *α* **and** *b* **are both even**.